Integrated Robust Optimal Design (IROD) via sensitivity minimization
نویسندگان
چکیده
A novel Integrated Robust Optimal Design (IROD) methodology is presented in this work which combines a traditional sensitivity theory with relatively new advancements in Bilinear Matrix Inequality (BMI) constrained optimization problems. IROD provides the least conservative approach for robust control synthesis. The proposed methodology is demonstrated using numerical examples of integrated control-structure design problem for combine harvester header and excavator linkages. The IROD methodology is compared with the state of the art sequential design method using the two application examples, and the results show that the proposed methodology provides a viable alternative for robust controller synthesis and often times offers even a better performance than competing methods. Although this method requires linearization of nonlinear system at each system parameter optimization step, a technique to linearized Differential Algebraic Equations (DAE) is presented which allows use of symbolic approach for linearization. This technique avoids repetitive linearizations. For the nonlinear systems with parametric uncertainties which can not be linearized at operating points, a new methodology is proposed for robust feedback linearization using sensitivity dynamics-based formulation. The feedback linearization approach is used for systems with augmented sensitivity dynamics and used to refine control input to improve robustness. The method is demonstrated using an example of a position tracking control of a hydraulic actuator. The robustness of controller design is demonstrated by considering variations in fluid density parameter. The results show that the proposed methodology improves robustness of the feedback linearization to parametric variations.
منابع مشابه
Header height control of combine harvester via robust feedback linearization
Studies have shown that feedback linearization can provide an effective controller for many types of nonlinear systems. It is known, however, that these controllers are not robust, in particular to model uncertainties as the feedback linearization process involves canceling of nonlinearities in the dynamics using an exact model which is seldom available. Although there are several strategies to...
متن کاملWaveform Design using Second Order Cone Programming in Radar Systems
Transmit waveform design is one of the most important problems in active sensing and communication systems. This problem, due to the complexity and non-convexity, has been always the main topic of many papers for the decades. However, still an optimal solution which guarantees a global minimum for this multi-variable optimization problem is not found. In this paper, we propose an attracting met...
متن کاملA Robust Adaptive Observer-Based Time Varying Fault Estimation
This paper presents a new observer design methodology for a time varying actuator fault estimation. A new linear matrix inequality (LMI) design algorithm is developed to tackle the limitations (e.g. equality constraint and robustness problems) of the well known so called fast adaptive fault estimation observer (FAFE). The FAFE is capable of estimating a wide range of time-varying actuator fault...
متن کاملRobust Nonlinear Model Predictive Control with Reduction of Uncertainty Via Robust Optimal Experiment Design
This paper studies the reduction of the conservativeness of robust nonlinear model predictive control (NMPC) via the reduction of the uncertainty range using guaranteed parameter estimation. Optimal dynamic experiment design is formulated in the framework of robust NMPC in order to obtain probing inputs that maximize the information content of the feedback and simultaneously to guarantee the sa...
متن کاملA Multi-Period Robust Optimization Model for Integrated Planning of Decisions in the Petrochemical Products’ Supply Chain
Optimal management and planning in the petrochemical industry will bring about many economic benefits, including depended industries. In this research we examine technical and operational planning in the petrochemical supply chain network to assess how to optimize periodic decisions such as inventory of raw materials and products, pricing, transportation and flow of materials and products. In...
متن کامل